Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 18.962
1.
J Diabetes Res ; 2024: 1222395, 2024.
Article En | MEDLINE | ID: mdl-38725443

This study is aimed at assessing the impact of soluble dietary fiber inulin on the treatment of diabetes-related chronic inflammation and kidney injury in mice with type 2 diabetes (T2DM). The T2DM model was created by feeding the Institute of Cancer Research (ICR) mice a high-fat diet and intraperitoneally injecting them with streptozotocin (50 mg/kg for 5 consecutive days). The thirty-six ICR mice were divided into three dietary groups: the normal control (NC) group, the T2DM (DM) group, and the DM + inulin diet (INU) group. The INU group mice were given inulin at the dose of 500 mg/kg gavage daily until the end of the 12th week. After 12 weeks, the administration of inulin resulted in decreased serum levels of fasting blood glucose (FBG), low-density lipoprotein cholesterol (LDL-C), blood urea nitrogen (BUN), and creatinine (CRE). The administration of inulin not only ameliorated renal injury but also resulted in a reduction in the mRNA expressions of inflammatory factors in the spleen and serum oxidative stress levels, when compared to the DM group. Additionally, inulin treatment in mice with a T2DM model led to a significant increase in the concentrations of three primary short-chain fatty acids (SCFAs) (acetic acid, propionic acid, and butyric acid), while the concentration of advanced glycation end products (AGEs), a prominent inflammatory factor in diabetes, exhibited a significant decrease. The results of untargeted metabolomics indicate that inulin has the potential to alleviate inflammatory response and kidney damage in diabetic mice. This beneficial effect is attributed to its impact on various metabolic pathways, including glycerophospholipid metabolism, taurine and hypotaurine metabolism, arginine biosynthesis, and tryptophan metabolism. Consequently, oral inulin emerges as a promising treatment option for diabetes and kidney injury.


Blood Glucose , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Inflammation , Inulin , Kidney , Metabolomics , Mice, Inbred ICR , Oxidative Stress , Animals , Inulin/pharmacology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Mice , Male , Blood Glucose/metabolism , Blood Glucose/drug effects , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Oxidative Stress/drug effects , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/blood , Diabetic Nephropathies/pathology , Fatty Acids, Volatile/metabolism , Diet, High-Fat , Blood Urea Nitrogen
2.
FASEB J ; 38(9): e23638, 2024 May 15.
Article En | MEDLINE | ID: mdl-38713098

Diabetic retinopathy (DR) is associated with ocular inflammation leading to retinal barrier breakdown, vascular leakage, macular edema, and vision loss. DR is not only a microvascular disease but also involves retinal neurodegeneration, demonstrating that pathological changes associated with neuroinflammation precede microvascular injury in early DR. Macrophage activation plays a central role in neuroinflammation. During DR, the inflammatory response depends on the polarization of retinal macrophages, triggering pro-inflammatory (M1) or anti-inflammatory (M2) activity. This study aimed to determine the role of macrophages in vascular leakage through the tight junction complexes of retinal pigment epithelium, which is the outer blood-retinal barrier (BRB). Furthermore, we aimed to assess whether interleukin-10 (IL-10), a representative M2-inducer, can decrease inflammatory macrophages and alleviate outer-BRB disruption. We found that modulation of macrophage polarization affects the structural and functional integrity of ARPE-19 cells in a co-culture system under high-glucose conditions. Furthermore, we demonstrated that intravitreal IL-10 injection induces an increase in the ratio of anti-inflammatory macrophages and effectively suppresses outer-BRB disruption and vascular leakage in a mouse model of early-stage streptozotocin-induced diabetes. Our results suggest that modulation of macrophage polarization by IL-10 administration during early-stage DR has a promising protective effect against outer-BRB disruption and vascular leakage. This finding provides valuable insights for early intervention in DR.


Blood-Retinal Barrier , Diabetes Mellitus, Experimental , Diabetic Retinopathy , Interleukin-10 , Macrophages , Mice, Inbred C57BL , Animals , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Blood-Retinal Barrier/metabolism , Blood-Retinal Barrier/pathology , Interleukin-10/metabolism , Mice , Macrophages/metabolism , Macrophages/drug effects , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/metabolism , Male , Humans , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/drug effects , Streptozocin , Macrophage Activation/drug effects , Disease Models, Animal , Cell Polarity/drug effects
3.
Mol Med ; 30(1): 58, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720283

BACKGROUND: Vascular calcification (VC) is a complication in diabetes mellitus (DM) patients. Osteogenic phenotype switching of vascular smooth muscle cells (VSMCs) plays a critical role in diabetes-related VC. Mitophagy can inhibit phenotype switching in VSMCs. This study aimed to investigate the role of the glucagon-like peptide-1 receptor (GLP-1R) agonist exendin 4 (EX4) in mitophagy-induced phenotype switching. MATERIALS AND METHODS: The status of VC in T2DM mice was monitored using Von Kossa and Alizarin Red S (ARS) staining in mouse aortic tissue. Human aortic smooth muscle cells were cultured in high glucose (HG) and ß-glycerophosphate (ß-GP) conditioned medium. Accumulation of LC3B and p62 was detected in the mitochondrial fraction. The effect of EX4 in vitro and in vivo was investigated by knocking down AMPKα1. RESULTS: In diabetic VC mice, EX4 decreased the percentage of von Kossa/ARS positive area. EX4 inhibited osteogenic differentiation of HG/ß-GP-induced VSMCs. In HG/ß-GP-induced VSMCs, the number of mitophagosomes was increased, whereas the addition of EX4 restored mitochondrial function, increased the number of mitophagosome-lysosome fusions, and reduced p62 in mitochondrial frictions. EX4 increased the phosphorylation of AMPKα (Thr172) and ULK1 (Ser555) in HG/ß-GP-induced VSMCs. After knockdown of AMPKα1, ULK1 could not be activated by EX4. The accumulation of LC3B and p62 could not be reduced after AMPKα1 knockdown. Knockdown of AMPKα1 negated the therapeutic effects of EX4 on VC of diabetic mice. CONCLUSION: EX4 could promote mitophagy by activating the AMPK signaling pathway, attenuate insufficient mitophagy, and thus inhibit the osteogenic phenotype switching of VSMCs.


AMP-Activated Protein Kinases , Exenatide , Glucagon-Like Peptide-1 Receptor , Mitophagy , Signal Transduction , Vascular Calcification , Animals , Mitophagy/drug effects , Vascular Calcification/etiology , Vascular Calcification/metabolism , Vascular Calcification/drug therapy , Signal Transduction/drug effects , Mice , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Male , AMP-Activated Protein Kinases/metabolism , Humans , Exenatide/pharmacology , Exenatide/therapeutic use , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Disease Models, Animal , Mice, Inbred C57BL
4.
Sci Rep ; 14(1): 10658, 2024 05 09.
Article En | MEDLINE | ID: mdl-38724553

This study aimed to investigate the effects of exercise on excessive mitochondrial fission, insulin resistance, and inflammation in the muscles of diabetic rats. The role of the irisin/AMPK pathway in regulating exercise effects was also determined. Thirty-two 8-week-old male Wistar rats were randomly divided into four groups (n = 8 per group): one control group (Con) and three experimental groups. Type 2 diabetes mellitus (T2DM) was induced in the experimental groups via a high-fat diet followed by a single intraperitoneal injection of streptozotocin (STZ) at a dosage of 30 mg/kg body weight. After T2DM induction, groups were assigned as sedentary (DM), subjected to 8 weeks of treadmill exercise training (Ex), or exercise training combined with 8-week cycloRGDyk treatment (ExRg). Upon completion of the last training session, all rats were euthanized and samples of fasting blood and soleus muscle were collected for analysis using ELISA, immunofluorescence, RT-qPCR, and Western blotting. Statistical differences between groups were analyzed using one-way ANOVA, and differences between two groups were assessed using t-tests. Our findings demonstrate that exercise training markedly ameliorated hyperglycaemia, hyperlipidaemia, and insulin resistance in diabetic rats (p < 0.05). It also mitigated the disarranged morphology and inflammation of skeletal muscle associated with T2DM (p < 0.05). Crucially, exercise training suppressed muscular excessive mitochondrial fission in the soleus muscle of diabetic rats (p < 0.05), and enhanced irisin and p-AMPK levels significantly (p < 0.05). However, exercise-induced irisin and p-AMPK expression were inhibited by cycloRGDyk treatment (p < 0.05). Furthermore, the administration of CycloRGDyk blocked the effects of exercise training in reducing excessive mitochondrial fission and inflammation in the soleus muscle of diabetic rats, as well as the positive effects of exercise training on improving hyperlipidemia and insulin sensitivity in diabetic rats (p < 0.05). These results indicate that regular exercise training effectively ameliorates insulin resistance and glucolipid metabolic dysfunction, and reduces inflammation in skeletal muscle. These benefits are partially mediated by reductions in mitochondrial fission through the irisin/AMPK signalling pathway.


AMP-Activated Protein Kinases , Diabetes Mellitus, Experimental , Fibronectins , Inflammation , Insulin Resistance , Mitochondrial Dynamics , Muscle, Skeletal , Physical Conditioning, Animal , Rats, Wistar , Animals , Fibronectins/metabolism , Male , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/therapy , Rats , Muscle, Skeletal/metabolism , Inflammation/metabolism , AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/therapy , Signal Transduction , Streptozocin
5.
PLoS Pathog ; 20(5): e1012148, 2024 May.
Article En | MEDLINE | ID: mdl-38728367

Previously, we found that Mycobacterium tuberculosis (Mtb) infection in type 2 diabetes mellitus (T2DM) mice enhances inflammatory cytokine production which drives pathological immune responses and mortality. In the current study, using a T2DM Mtb infection mice model, we determined the mechanisms that make T2DM mice alveolar macrophages (AMs) more inflammatory upon Mtb infection. Among various cell death pathways, necroptosis is a major pathway involved in inflammatory cytokine production by T2DM mice AMs. Anti-TNFR1 antibody treatment of Mtb-infected AMs from T2DM mice significantly reduced expression of receptor interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL) (necroptosis markers) and IL-6 production. Metabolic profile comparison of Mtb-infected AMs from T2DM mice and Mtb-infected AMs of nondiabetic control mice indicated that 2-ketohexanoic acid and deoxyadenosine monophosphate were significantly abundant, and acetylcholine and pyridoxine (Vitamin B6) were significantly less abundant in T2DM mice AMs infected with Mtb. 2-Ketohexanoic acid enhanced expression of TNFR1, RIPK3, MLKL and inflammatory cytokine production in the lungs of Mtb-infected nondiabetic mice. In contrast, pyridoxine inhibited RIPK3, MLKL and enhanced expression of Caspase 3 (apoptosis marker) in the lungs of Mtb-infected T2DM mice. Our findings demonstrate that metabolic changes in Mtb-infected T2DM mice enhance TNFR1-mediated necroptosis of AMs, which leads to excess inflammation and lung pathology.


Diabetes Mellitus, Type 2 , Mycobacterium tuberculosis , Necroptosis , Animals , Mice , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/microbiology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/immunology , Macrophages, Alveolar/microbiology , Mice, Inbred C57BL , Tuberculosis/immunology , Tuberculosis/metabolism , Tuberculosis/microbiology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/microbiology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Male , Cytokines/metabolism
6.
Cell Biochem Funct ; 42(4): e4030, 2024 Jun.
Article En | MEDLINE | ID: mdl-38720663

Diabetes mellitus (DM) is a collection of metabolic disorder that is characterized by chronic hyperglycemia. Recent studies have demonstrated the crucial involvement of oxidative stress (OS) and inflammatory reactions in the development of DM. Curcumin (CUR), a natural compound derived from turmeric, exerts beneficial effects on diabetes mellitus through its interaction with the nuclear factor kappa B (NF-κB) pathway. Research indicates that CUR targets inflammatory mediators in diabetes, including tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6), by modulating the NF-κB signaling pathway. By reducing the expression of these inflammatory factors, CUR demonstrates protective effects in DM by improving pancreatic ß-cells function, normalizing inflammatory cytokines, reducing OS and enhancing insulin sensitivity. The findings reveal that CUR administration effectively lowered blood glucose elevation, reinstated diminished serum insulin levels, and enhanced body weight in Streptozotocin -induced diabetic rats. CUR exerts its beneficial effects in management of diabetic complications through regulation of signaling pathways, such as calcium-calmodulin (CaM)-dependent protein kinase II (CaMKII), peroxisome proliferator-activated receptor gamma (PPAR-γ), NF-κB, and transforming growth factor ß1 (TGFB1). Moreover, CUR reversed the heightened expression of inflammatory cytokines (TNF-α, Interleukin-1 beta (IL-1ß), IL-6) and chemokines like MCP-1 in diabetic specimens, vindicating its anti-inflammatory potency in counteracting hyperglycemia-induced alterations. CUR diminishes OS, avert structural kidney damage linked to diabetic nephropathy, and suppress NF-κB activity. Furthermore, CUR exhibited a protective effect against diabetic cardiomyopathy, lung injury, and diabetic gastroparesis. Conclusively, the study posits that CUR could potentially offer therapeutic benefits in relieving diabetic complications through its influence on the NF-κB pathway.


Curcumin , Inflammation , NF-kappa B , Oxidative Stress , Signal Transduction , Curcumin/pharmacology , Curcumin/therapeutic use , Oxidative Stress/drug effects , NF-kappa B/metabolism , Animals , Inflammation/drug therapy , Inflammation/metabolism , Signal Transduction/drug effects , Humans , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Rats
7.
BMC Genomics ; 25(1): 450, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714918

BACKGROUND: Circular RNAs (circRNAs) are a novel kind of non-coding RNAs proved to play crucial roles in the development of multiple diabetic complications. However, their expression and function in diabetes mellitus (DM)-impaired salivary glands are unknown. RESULTS: By using microarray technology, 663 upregulated and 999 downregulated circRNAs companied with 813 upregulated and 525 downregulated mRNAs were identified in the parotid glands (PGs) of type2 DM mice under a 2-fold change and P < 0.05 cutoff criteria. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis of upregulated mRNAs showed enrichments in immune system process and peroxisome proliferator-activated receptor (PPAR) signaling pathway. Infiltration of inflammatory cells and increased inflammatory cytokines were observed in diabetic PGs. Seven differently expressed circRNAs validated by qRT-PCR were selected for coding-non-coding gene co-expression (CNC) and competing endogenous RNA (ceRNA) networks analysis. PPAR signaling pathway was primarily enriched through analysis of circRNA-mRNA networks. Moreover, the circRNA-miRNA-mRNA networks highlighted an enrichment in the regulation of actin cytoskeleton. CONCLUSION: The inflammatory response is elevated in diabetic PGs. The selected seven distinct circRNAs may attribute to the injury of diabetic PG by modulating inflammatory response through PPAR signaling pathway and actin cytoskeleton in diabetic PGs.


Diabetes Mellitus, Type 2 , Gene Expression Profiling , Gene Regulatory Networks , Parotid Gland , RNA, Circular , Animals , RNA, Circular/genetics , Mice , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Parotid Gland/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Peroxisome Proliferator-Activated Receptors/genetics , Transcriptome , Gene Ontology , Male , Signal Transduction , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism
8.
Cardiovasc Diabetol ; 23(1): 160, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715043

BACKGROUND: Diabetic cardiomyopathy (DCM) is a crucial complication of long-term chronic diabetes that can lead to myocardial hypertrophy, myocardial fibrosis, and heart failure. There is increasing evidence that DCM is associated with pyroptosis, a form of inflammation-related programmed cell death. Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor ß superfamily, which regulates oxidative stress, inflammation, and cell survival to mitigate myocardial hypertrophy, myocardial infarction, and vascular injury. However, the role of GDF11 in regulating pyroptosis in DCM remains to be elucidated. This research aims to investigate the role of GDF11 in regulating pyroptosis in DCM and the related mechanism. METHODS AND RESULTS: Mice were injected with streptozotocin (STZ) to induce a diabetes model. H9c2 cardiomyocytes were cultured in high glucose (50 mM) to establish an in vitro model of diabetes. C57BL/6J mice were preinjected with adeno-associated virus 9 (AAV9) intravenously via the tail vein to specifically overexpress myocardial GDF11. GDF11 attenuated pyroptosis in H9c2 cardiomyocytes after high-glucose treatment. In diabetic mice, GDF11 alleviated cardiomyocyte pyroptosis, reduced myocardial fibrosis, and improved cardiac function. Mechanistically, GDF11 inhibited pyroptosis by preventing inflammasome activation. GDF11 achieved this by specifically binding to apoptosis-associated speck-like protein containing a CARD (ASC) and preventing the assembly and activation of the inflammasome. Additionally, the expression of GDF11 during pyroptosis was regulated by peroxisome proliferator-activated receptor α (PPARα). CONCLUSION: These findings demonstrate that GDF11 can treat diabetic cardiomyopathy by alleviating pyroptosis and reveal the role of the PPARα-GDF11-ASC pathway in DCM, providing ideas for new strategies for cardioprotection.


Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Fibrosis , Growth Differentiation Factors , Inflammasomes , Mice, Inbred C57BL , Myocytes, Cardiac , Pyroptosis , Signal Transduction , Animals , Pyroptosis/drug effects , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/prevention & control , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/physiopathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Cardiac/drug effects , Diabetes Mellitus, Experimental/metabolism , Cell Line , Inflammasomes/metabolism , Male , Growth Differentiation Factors/metabolism , Rats , Blood Glucose/metabolism , Mice , Glucose/metabolism , Glucose/toxicity , Bone Morphogenetic Proteins , PPAR alpha
9.
Behav Brain Funct ; 20(1): 9, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702776

BACKGROUND: In the present study, we investigated the effect of high-intensity interval training (HIIT) on cognitive behaviors in female rats with a high-fat diet + streptozotocin (STZ)-induced type 2 diabetes. METHODS: Twenty-four female rats were divided into four groups randomly (n = 6): control (C), control + exercise (Co + EX), diabetes mellitus (type 2) (T2D), and diabetes mellitus + exercise (T2D + EX). Diabetes was induced by a two-month high-fat diet and a single dose of STZ (35 mg/kg) in the T2D and T2D + EX groups. The Co + EX and T2D + EX groups performed HIIT for eight weeks (five sessions per week, running on a treadmill at 80-100% of VMax, 4-10 intervals). Elevated plus maze (EPM) and open field test (OFT) were used for assessing anxiety-like behaviors, and passive avoidance test (PAT) and Morris water maze (MWM) were applied for evaluating learning and memory. The hippocampal levels of beta-amyloid (Aß) and Tau were also assessed using Western blot. RESULTS: An increase in fasting blood glucose (FBG), hippocampal level of Tau, and a decrease in the percentage of open arm time (%OAT) as an index of anxiety-like behavior were seen in the female diabetic rats which could be reversed by HIIT. In addition, T2D led to a significant decrease in rearing and grooming in the OFT. No significant difference among groups was seen for the latency time in the PAT and learning and memory in the MWM. CONCLUSIONS: HIIT could improve anxiety-like behavior at least in part through changes in hippocampal levels of Tau.


Amyloid beta-Peptides , Anxiety , Diabetes Mellitus, Experimental , Hippocampus , Physical Conditioning, Animal , tau Proteins , Animals , Female , Hippocampus/metabolism , tau Proteins/metabolism , Rats , Physical Conditioning, Animal/physiology , Physical Conditioning, Animal/methods , Physical Conditioning, Animal/psychology , Anxiety/therapy , Anxiety/psychology , Anxiety/metabolism , Amyloid beta-Peptides/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/psychology , Diabetes Mellitus, Experimental/therapy , High-Intensity Interval Training/methods , Maze Learning/physiology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/psychology , Diabetes Mellitus, Type 2/therapy , Behavior, Animal/physiology , Diet, High-Fat/adverse effects , Rats, Sprague-Dawley
10.
Cardiovasc Diabetol ; 23(1): 150, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702777

BACKGROUND: Vasculopathy is the most common complication of diabetes. Endothelial cells located in the innermost layer of blood vessels are constantly affected by blood flow or vascular components; thus, their mechanosensitivity plays an important role in mediating vascular regulation. Endothelial damage, one of the main causes of hyperglycemic vascular complications, has been extensively studied. However, the role of mechanosensitive signaling in hyperglycemic endothelial damage remains unclear. METHODS: Vascular endothelial-specific Piezo1 knockout mice were generated to investigate the effects of Piezo1 on Streptozotocin-induced hyperglycemia and vascular endothelial injury. In vitro activation or knockdown of Piezo1 was performed to evaluate the effects on the proliferation, migration, and tubular function of human umbilical vein endothelial cells in high glucose. Reactive oxygen species production, mitochondrial membrane potential alternations, and oxidative stress-related products were used to assess the extent of oxidative stress damage caused by Piezo1 activation. RESULTS: Our study found that in VECreERT2;Piezo1flox/flox mice with Piezo1 conditional knockout in vascular endothelial cells, Piezo1 deficiency alleviated streptozotocin-induced hyperglycemia with reduced apoptosis and abscission of thoracic aortic endothelial cells, and decreased the inflammatory response of aortic tissue caused by high glucose. Moreover, the knockout of Piezo1 showed a thinner thoracic aortic wall, reduced tunica media damage, and increased endothelial nitric oxide synthase expression in transgenic mice, indicating the relief of endothelial damage caused by hyperglycemia. We also showed that Piezo1 activation aggravated oxidative stress injury and resulted in severe dysfunction through the Ca2+-induced CaMKII-Nrf2 axis in human umbilical vein endothelial cells. In Piezo1 conditional knockout mice, Piezo1 deficiency partially restored superoxide dismutase activity and reduced malondialdehyde content in the thoracic aorta. Mechanistically, Piezo1 deficiency decreased CaMKII phosphorylation and restored the expression of Nrf2 and its downstream molecules HO-1 and NQO1. CONCLUSION: In summary, our study revealed that Piezo1 is involved in high glucose-induced oxidative stress injury and aggravated endothelial dysfunction, which have great significance for alleviating endothelial damage caused by hyperglycemia.


Blood Glucose , Diabetes Mellitus, Experimental , Human Umbilical Vein Endothelial Cells , Ion Channels , Mice, Knockout , Nitric Oxide Synthase Type III , Oxidative Stress , Animals , Humans , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Diabetes Mellitus, Experimental/metabolism , Ion Channels/metabolism , Ion Channels/genetics , Blood Glucose/metabolism , Nitric Oxide Synthase Type III/metabolism , Mechanotransduction, Cellular , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/deficiency , Cells, Cultured , Cell Proliferation , Apoptosis , Male , Diabetic Angiopathies/metabolism , Diabetic Angiopathies/physiopathology , Diabetic Angiopathies/pathology , Diabetic Angiopathies/genetics , Diabetic Angiopathies/etiology , Cell Movement , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Aorta, Thoracic/metabolism , Aorta, Thoracic/pathology , Aorta, Thoracic/physiopathology , Mice , Streptozocin , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Endothelium, Vascular/pathology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
11.
Drug Des Devel Ther ; 18: 1439-1457, 2024.
Article En | MEDLINE | ID: mdl-38707616

Background: Acteoside, an active ingredient found in various medicinal herbs, is effective in the treatment of diabetic kidney disease (DKD); however, the intrinsic pharmacological mechanism of action of acteoside in the treatment of DKD remains unclear. This study utilizes a combined approach of network pharmacology and experimental validation to investigate the potential molecular mechanism systematically. Methods: First, acteoside potential targets and DKD-associated targets were aggregated from public databases. Subsequently, utilizing protein-protein interaction (PPI) networks, alongside GO and KEGG pathway enrichment analyses, we established target-pathway networks to identify core potential therapeutic targets and pathways. Further, molecular docking facilitated the confirmation of interactions between acteoside and central targets. Finally, the conjectured molecular mechanisms of acteoside against DKD were verified through experimentation on unilateral nephrectomy combined with streptozotocin (STZ) rat model. The underlying downstream mechanisms were further investigated. Results: Network pharmacology identified 129 potential intersected targets of acteoside for DKD treatment, including targets such as AKT1, TNF, Casp3, MMP9, SRC, IGF1, EGFR, HRAS, CASP8, and MAPK8. Enrichment analyses indicated the PI3K-Akt, MAPK, Metabolic, and Relaxin signaling pathways could be involved in this therapeutic context. Molecular docking revealed high-affinity binding of acteoside to PIK3R1, AKT1, and NF-κB1. In vivo studies validated the therapeutic efficacy of acteoside, demonstrating reduced blood glucose levels, improved serum Scr and BUN levels, decreased 24-hour urinary total protein (P<0.05), alongside mitigated podocyte injury (P<0.05) and ameliorated renal pathological lesions. Furthermore, this finding indicates that acteoside inhibits the expression of pyroptosis markers NLRP3, Caspase-1, IL-1ß, and IL-18 through the modulation of the PI3K/AKT/NF-κB pathway. Conclusion: Acteoside demonstrates renoprotective effects in DKD by regulating the PI3K/AKT/NF-κB signaling pathway and alleviating pyroptosis. This study explores the pharmacological mechanism underlying acteoside's efficacy in DKD treatment, providing a foundation for further basic and clinical research.


Diabetes Mellitus, Experimental , Diabetic Nephropathies , Glucosides , Molecular Docking Simulation , Network Pharmacology , Phenols , Polyphenols , Streptozocin , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Animals , Rats , Glucosides/pharmacology , Glucosides/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Male , Phenols/pharmacology , Phenols/chemistry , Rats, Sprague-Dawley
12.
Ren Fail ; 46(1): 2347446, 2024 Dec.
Article En | MEDLINE | ID: mdl-38695335

This study is intended to explore the effect of hypoxia-inducible factor-1α (HIF-1α) activation on lipid accumulation in the diabetic kidney. A type 1 diabetic rat model was established by STZ intraperitoneal injection. Cobalt chloride (CoCl2) and YC-1 were used as the HIF-1α activator and antagonist, respectively. CoCl2 treatment significantly increased HIF-1α expression, accelerated lipid deposition, and accelerated tubular injury in diabetic kidneys. In vitro, CoCl2 effectively stabilized HIF-1α and increased its transportation from the cytoplasm to the nucleus, which was accompanied by significantly increased lipid accumulation in HK-2 cells. Furthermore, results obtained in vivo showed that HIF-1α protein expression in the renal tubules of diabetic rats was significantly downregulated by YC-1 treatment. Meanwhile, lipid accumulation in the tubules of the DM + YC-1 group was markedly decreased in comparison to the DM + DMSO group. Accordingly, PAS staining revealed that the pathological injury caused to the tubular epithelial cells was alleviated by YC-1 treatment. Furthermore, the blood glucose level, urine albumin creatinine ratio, and NAG creatinine ratio in the DM + YC-1 group were significantly decreased compared to the DM + DMSO group. Moreover, the protein expression levels of transforming growth factor ß1 (TGF-ß1) and connective tissue growth factor (CTGF) in diabetic kidneys were decreased by YC-1 treatment. Our findings demonstrate that the activation of HIF-1α contributed to interstitial injury in a rat model of diabetic nephropathy and that the underlying mechanism involved the induction of lipid accumulation.


Cobalt , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Hypoxia-Inducible Factor 1, alpha Subunit , Animals , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Rats , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Male , Rats, Sprague-Dawley , Kidney Tubules/pathology , Kidney Tubules/metabolism , Transforming Growth Factor beta1/metabolism , Indazoles/pharmacology , Humans , Connective Tissue Growth Factor/metabolism , Lipid Metabolism/drug effects , Cell Line
13.
Life Sci Alliance ; 7(7)2024 Jul.
Article En | MEDLINE | ID: mdl-38697845

Defective mitophagy in renal tubular epithelial cells is one of the main drivers of renal fibrosis in diabetic kidney disease. Our gene sequencing data showed the expression of PINK1 and BNIP3, two key molecules of mitophagy, was decreased in renal tissues of VDR-knockout mice. Herein, streptozotocin (STZ) was used to induce renal interstitial fibrosis in mice. VDR deficiency exacerbated STZ-induced renal impairment and defective mitophagy. Paricalcitol (pari, a VDR agonist) and the tubular epithelial cell-specific overexpression of VDR restored the expression of PINK1 and BNIP3 in the renal cortex and attenuated STZ-induced kidney fibrosis and mitochondrial dysfunction. In HK-2 cells under high glucose conditions, an increased level of α-SMA, COL1, and FN and a decreased expression of PINK1 and BNIP3 with severe mitochondrial damage were observed, and these alterations could be largely reversed by pari treatment. ChIP-qPCR and luciferase reporter assays showed VDR could positively regulate the transcription of Pink1 and Bnip3 genes. These findings reveal that VDR could restore mitophagy defects and attenuate STZ-induced fibrosis in diabetic mice through regulation of PINK1 and BNIP3.


Diabetes Mellitus, Experimental , Diabetic Nephropathies , Ergocalciferols , Membrane Proteins , Mice, Knockout , Mitophagy , Protein Kinases , Receptors, Calcitriol , Streptozocin , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/genetics , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/genetics , Mitophagy/genetics , Mitophagy/drug effects , Protein Kinases/metabolism , Protein Kinases/genetics , Humans , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/genetics , Male , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Fibrosis , Kidney Tubules/metabolism , Kidney Tubules/pathology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Mice, Inbred C57BL , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Cell Line , Gene Expression Regulation/drug effects
14.
Cell Commun Signal ; 22(1): 252, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698453

BACKGROUND: Ischemic postconditioning (IPostC) has been reported as a promising method for protecting against myocardial ischemia-reperfusion (MI/R) injury. Our previous study found that the infarct-limiting effect of IPostC is abolished in the heart of diabetes whose cardiac expression of DJ-1 (also called PARK7, Parkinsonism associated deglycase) is reduced. However, the role and in particular the underlying mechanism of DJ-1 in the loss of sensitivity to IPostC-induced cardioprotection in diabetic hearts remains unclear. METHODS: Streptozotocin-induced type 1 diabetic rats were subjected to MI/R injury by occluding the left anterior descending artery (LAD) and followed by reperfusion. IPostC was induced by three cycles of 10s of reperfusion and ischemia at the onset of reperfusion. AAV9-CMV-DJ-1, AAV9-CMV-C106S-DJ-1 or AAV9-DJ-1 siRNA were injected via tail vein to either over-express or knock-down DJ-1 three weeks before inducing MI/R. RESULTS: Diabetic rats subjected to MI/R exhibited larger infarct area, more severe oxidative injury concomitant with significantly reduced cardiac DJ-1 expression and increased PTEN expression as compared to non-diabetic rats. AAV9-mediated cardiac DJ-1 overexpression, but not the cardiac overexpression of DJ-1 mutant C106S, restored IPostC-induced cardioprotection and this effect was accompanied by increased cytoplasmic DJ-1 translocation toward nuclear and mitochondrial, reduced PTEN expression, and increased Nrf-2/HO-1 transcription. Our further study showed that AAV9-mediated targeted DJ-1 gene knockdown aggravated MI/R injury in diabetic hearts, and this exacerbation of MI/R injury was partially reversed by IPostC in the presence of PTEN inhibition or Nrf-2 activation. CONCLUSIONS: These findings suggest that DJ-1 preserves the cardioprotective effect of IPostC against MI/R injury in diabetic rats through nuclear and mitochondrial DJ-1 translocation and that inhibition of cardiac PTEN and activation of Nrf-2/HO-1 may represent the major downstream mechanisms whereby DJ-1 preserves the cardioprotective effect of IPostC in diabetes.


Diabetes Mellitus, Experimental , Ischemic Postconditioning , Myocardial Reperfusion Injury , PTEN Phosphohydrolase , Protein Deglycase DJ-1 , Rats, Sprague-Dawley , Animals , Protein Deglycase DJ-1/metabolism , Protein Deglycase DJ-1/genetics , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Diabetes Mellitus, Experimental/metabolism , Male , Rats , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/complications , Protein Transport , Streptozocin , Myocardial Infarction/metabolism , Myocardial Infarction/pathology
15.
Sci Rep ; 14(1): 10053, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698047

Type 2 diabetes mellitus is a worldwide public health issue. In the globe, Egypt has the ninth-highest incidence of diabetes. Due to its crucial role in preserving cellular homeostasis, the autophagy process has drawn a lot of attention in recent years, Therefore, the purpose of this study was to evaluate the traditional medication metformin with the novel therapeutic effects of cinnamondehyde on adipocyte and hepatic autophagy in a model of high-fat diet/streptozotocin-diabetic rats. The study was conducted on 40 male albino rats, classified into 2 main groups, the control group and the diabetic group, which was subdivided into 4 subgroups (8 rats each): untreated diabetic rats, diabetic rats received oral cinnamaldehyde 40 mg/kg/day, diabetic rats received oral metformin 200 mg/kg/day and diabetic rats received a combination of both cinnamaldehyde and metformin daily for 4 weeks. The outcomes demonstrated that cinnamaldehyde enhanced the lipid profile and glucose homeostasis. Moreover, Cinnamaldehyde had the opposite effects on autophagy in both tissues; by altering the expression of genes that control autophagy, such as miRNA 30a and mammalian target of rapamycin (mTOR), it reduced autophagy in adipocytes and stimulated it in hepatic tissues. It may be inferred that by increasing the treatment efficacy of metformin and lowering its side effects, cinnamaldehyde could be utilized as an adjuvant therapy with metformin for the treatment of type 2 diabetes.


Acrolein , Acrolein/analogs & derivatives , Adipocytes , Autophagy , Diabetes Mellitus, Experimental , Liver , Metformin , Animals , Acrolein/pharmacology , Acrolein/therapeutic use , Autophagy/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Rats , Adipocytes/drug effects , Adipocytes/metabolism , Metformin/pharmacology , Diet, High-Fat/adverse effects , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Streptozocin , Blood Glucose/metabolism , TOR Serine-Threonine Kinases/metabolism
16.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 675-681, 2024 Apr 20.
Article Zh | MEDLINE | ID: mdl-38708500

OBJECTIVE: To investigate the role of irisin in exercise-induced improvement of renal function in type 2 diabetic rats. METHODS: Forty male SD rats aged 4-6 weeks were randomized into normal control group, type 2 diabetes mellitus model group, diabetic exercise (DE) group and diabetic irisin (DI) group (n=8). The rats in DE group were trained with treadmill running for 8 weeks, and those in DI group were given scheduled irisin injections for 8 weeks. After the treatments, blood biochemical parameters of the rats were examined, and renal histopathology was observed with HE, Masson and PAS staining. Western blotting was used to detect the protein expression levels in the rats'kidneys. RESULTS: The diabetic rats showed significantly increased levels of fasting insulin, total cholesterol, triglyceride, serum creatinine and blood urea nitrogen with lowered serum irisin level (all P < 0.05). Compared with those in DM group, total cholesterol, triglyceride, serum creatinine and blood urea nitrogen levels were decreased and serum irisin levels were increased in both DE and DI groups (all P < 0.05). The rats in DM group showed obvious structural disorders and collagen fiber deposition in the kidneys, which were significantly improved in DE group and DI group. Both regular exercises and irisin injections significantly ameliorated the reduction of FNDC5, LC3-II/I, Atg7, Beclin-1, p-AMPK, AMPK and SIRT1 protein expressions and lowered of p62 protein expression in the kidneys of the diabetic rats (all P < 0.05). CONCLUSION: Both exercise and exogenous irisin treatment improve nephropathy in type 2 diabetic rats possibly due to irisin-mediated activation of the AMPK/SIRT1 pathway in the kidneys to promote renal autophagy.


Autophagy , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Fibronectins , Kidney , Physical Conditioning, Animal , Rats, Sprague-Dawley , Sirtuin 1 , Animals , Fibronectins/metabolism , Male , Rats , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Experimental/metabolism , Kidney/metabolism , Sirtuin 1/metabolism , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/therapy , Beclin-1/metabolism , Creatinine/blood , Blood Urea Nitrogen , Insulin , Triglycerides/metabolism , Triglycerides/blood , Cholesterol/blood , AMP-Activated Protein Kinases/metabolism
17.
Sci Rep ; 14(1): 10340, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710764

This study aims to evaluate the role of trefoil factor 3 (TFF3) peptides in type 2 diabetes mellitus (T2DM) from an inflammatory perspective. The focus was on exploring how TFF3 affects the function of T cells. TFF3 overexpression model was constructed using lentivirus in Jurkat cell lines. We evaluated the impact of TFF3 on the proliferation, apoptosis, and IL-17A levels of Jurkat cells cultured in high glucose. The T2DM model was induced in TFF3 knockout (KO) mice through streptozotocin combined with high-fat diet. The measurements included glucose tolerance, insulin tolerance, inflammation markers, Th17 cell proportion, and pancreatic pathological changes. The T2DM modeling led to splenomegaly in mice, and increased expression of TFF3 in their spleens. Overexpression of TFF3 increased the proportion of IL-17+ T cells and the levels of Th17-related cytokines in Jurkat cells. There was no difference in body weight and blood glucose levels between wild-type and TFF3 KO mice. However, T2DM mice lacking the TFF3 gene showed improved glucose utilization, ameliorated pancreatic pathology, decreased inflammation levels, and reduced Th17 cell ratio. TFF3 may be involved in the chronic inflammatory immune response in T2DM. Its mechanism may be related to the regulation of the RORγt/IL-17 signaling pathway and its impact on T cell proliferation and apoptosis.


Diabetes Mellitus, Type 2 , Mice, Knockout , Th17 Cells , Trefoil Factor-3 , Th17 Cells/immunology , Th17 Cells/metabolism , Animals , Humans , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/immunology , Mice , Trefoil Factor-3/metabolism , Trefoil Factor-3/genetics , Jurkat Cells , Interleukin-17/metabolism , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/metabolism , Male , Cell Proliferation , Apoptosis , Diet, High-Fat/adverse effects
18.
BMC Med Genomics ; 17(1): 122, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711057

OBJECTIVE: There is increasing evidence that type 2 diabetes mellitus (T2DM) is an independent risk factor for the occur of tendinopathy. Therefore, this study is the first to explore the dynamic changes of the "gene profile" of supraspinatus tendon in rats at different time points after T2DM induction through transcriptomics, providing potential molecular markers for exploring the pathogenesis of diabetic tendinopathy. METHODS: A total of 40 Sprague-Dawley rats were randomly divided into normal (NG, n = 10) and T2DM groups (T2DM, n = 30) and subdivided into three groups according to the duration of diabetes: T2DM-4w, T2DM-8w, and T2DM-12w groups; the duration was calculated from the time point of T2DM rat model establishment. The three comparison groups were set up in this study, T2DM-4w group vs. NG, T2DM-8w group vs. NG, and T2DM-12w group vs. NG. Differentially expressed genes (DEGs) in 3 comparison groups were screened. The intersection of the three comparison groups' DEGs was defined as key genes that changed consistently in the supraspinatus tendon after diabetes induction. Cluster analysis, gene ontology (GO) functional annotation analysis and Kyoto encyclopedia of genes and genomes (KEGG) functional annotation and enrichment analysis were performed for DEGs. RESULTS: T2DM-4w group vs. NG, T2DM-8w group vs. NG, and T2DM-12w group vs. NG detected 519 (251 up-regulated and 268 down-regulated), 459 (342 up-regulated and 117 down-regulated) and 328 (255 up-regulated and 73 down-regulated) DEGs, respectively. 103 key genes of sustained changes in the supraspinatus tendon following induction of diabetes, which are the first identified biomarkers of the supraspinatus tendon as it progresses through the course of diabetes.The GO analysis results showed that the most significant enrichment in biological processes was calcium ion transmembrane import into cytosol (3 DEGs). The most significant enrichment in cellular component was extracellular matrix (9 DEGs). The most significant enrichment in molecular function was glutamate-gated calcium ion channel activity (3 DEGs). The results of KEGG pathway enrichment analysis showed that there were 17 major pathways (p < 0.05) that diabetes affected supratinusculus tendinopathy, including cAMP signaling pathway and Calcium signaling pathway. CONCLUSIONS: Transcriptomics reveals dynamic changes in the"gene profiles"of rat supraspinatus tendon at three different time points after diabetes induction. The 103 DEGs identified in this study may provide potential molecular markers for exploring the pathogenesis of diabetic tendinopathy, and the 17 major pathways enriched in KEGG may provide new ideas for exploring the pathogenesis of diabetic tendinopathy.


Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Rats, Sprague-Dawley , Animals , Rats , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Male , Gene Expression Profiling , Transcriptome , Time Factors , Tendons/metabolism , Tendons/pathology , Rotator Cuff/pathology , Rotator Cuff/metabolism
19.
BMC Res Notes ; 17(1): 128, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711110

The elemental composition of chemical elements can vary between healthy and diseased tissues, providing essential insights into metabolic processes in physiological and diseased states. This study aimed to evaluate the calcium (Ca) and phosphorus (P) levels in the bones of rats with/without streptozotocin-induced diabetes and/or exposure to infrasound. X-ray fluorescence spectroscopy was used to determine the concentrations of Ca and P in Wistar rat tibiae samples.The results showed a significant decrease in bone P concentration in streptozotocin-induced diabetic rats compared to untreated animals. Similarly, the Ca/P ratio was higher in the streptozotocin-induced diabetic group. No significant differences were observed in bone Ca concentration between the studied groups or between animals exposed and not exposed to infrasound.Moreover, streptozotocin-induced diabetic rats had lower bone P concentration but unaltered bone Ca concentration compared to untreated rats. Infrasound exposure did not impact bone Ca or P levels. The reduced bone P concentration may be associated with an increased risk of bone fractures in diabetes.


Calcium , Diabetes Mellitus, Experimental , Phosphorus , Rats, Wistar , Streptozocin , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/chemically induced , Phosphorus/metabolism , Calcium/metabolism , Rats , Male , Spectrometry, X-Ray Emission , Tibia/metabolism , Sound/adverse effects , Bone and Bones/metabolism , Glucose Intolerance/metabolism
20.
PLoS One ; 19(4): e0302041, 2024.
Article En | MEDLINE | ID: mdl-38626157

Gestational diabetes mellitus (GDM) in human patients disrupts glucose metabolism post-pregnancy, affecting fetal development. Although obesity and genetic factors increase GDM risk, a lack of suitable models impedes a comprehensive understanding of its pathology. To address this, we administered streptozotocin (STZ, 75 mg/kg) to C57BL/6N mice for two days before pregnancy, establishing a convenient GDM model. Pregnant mice exposed to STZ (STZ-pregnant) were compared with STZ-injected virgin mice (STZ-virgin), citrate buffer-injected virgin mice (CB-virgin), and pregnant mice injected with citrate buffer (CB-pregnant). STZ-pregnant non-obese mice exhibited elevated blood glucose levels on gestational day 15.5 and impaired glucose tolerance. They also showed fewer normal fetuses compared to CB-pregnant mice. Additionally, STZ-pregnant mice had the highest plasma C-peptide levels, with decreased pancreatic islets or increased alpha cells compared to CB-pregnant mice. Kidneys isolated from STZ-pregnant mice did not display histological alterations or changes in gene expression for the principal glucose transporters (GLUT2 and SGLT2) and renal injury-associated markers. Notably, STZ-pregnant mice displayed decreased gene expression of insulin-receiving molecules (ISNR and IGFR1), indicating heightened insulin resistance. Liver histology in STZ-pregnant mice remained unchanged except for a pregnancy-related increase in lipid droplets within hepatocytes. Furthermore, the duodenum of STZ-pregnant mice exhibited increased gene expression of ligand-degradable IGFR2 and decreased expression of GLUT5 and GLUT12 (fructose and glucose transporters, respectively) compared to STZ-virgin mice. Thus, STZ-pregnant mice displayed GDM-like symptoms, including fetal abnormalities, while organs adapted to impaired glucose metabolism by altering glucose transport and insulin reception without histopathological changes. STZ-pregnant mice offer a novel model for studying mild onset non-obese GDM and species-specific differences in GDM features between humans and animals.


Diabetes Mellitus, Experimental , Diabetes, Gestational , Female , Pregnancy , Mice , Humans , Animals , Streptozocin/toxicity , Mice, Inbred C57BL , Insulin/metabolism , Diabetes Mellitus, Experimental/metabolism , Obesity , Glucose/metabolism , Phenotype , Citrates , Blood Glucose/metabolism
...